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ABSTRACT

Satellite retrieval algorithms and model microphysical parameterizations require guidance from ob-

servations to improve the representation of ice-phase microphysical quantities and processes. Here,

a parameterization for ice-phase particle size distributions (PSDs) is developed using in situ measure-

ments of cloud microphysical properties collected during the Global Precipitation Measurement (GPM)

Cold-Season Precipitation Experiment (GCPEx). This parameterization takes advantage of the relation

between the gamma-shape parameter m and the mass-weighted mean diameterDm of the ice-phase PSD

sampled during GCPEx. The retrieval of effective reflectivity Ze and ice water content (IWC) from the

reconstructed PSD using the m–Dm relationship was tested with independent measurements of Ze and

IWC and overall leads to a mean error of 8% in both variables. This represents an improvement when

compared with errors using the Field et al. parameterization of 10% in IWC and 37% in Ze. Current

radar precipitation retrieval algorithms from GPM assume that the PSD follows a gamma distribution

with m5 3. This assumption leads to a mean overestimation of 5% in the retrieved Ze, whereas applying

the m–Dm relationship found here reduces this bias to an overestimation of less than 1%. Proper se-

lection of the a and b coefficients in the mass–dimension relationship is also of crucial importance for

retrievals. An inappropriate selection of a and b, even from values observed in previous studies in similar

environments and cloud types, can lead to more than 100% bias in IWC and Ze for the ice-phase particles

analyzed here.

1. Introduction

Precipitation is a key component of Earth’s water and

energy cycles with direct consequences for life on Earth.

The understanding of precipitation processes has a va-

riety of implications on local and global scales includ-

ing the accurate quantification of freshwater supply and

the monitoring of extreme precipitation events. Models

and observations of ice-phase precipitation, used to

address these challenges, require assumptions of the

characteristics of the particle size distribution (PSD)

to perform accurate simulations and retrievals. In this

work, a new parameterization for the ice-phase PSD

based on aircraft measurements collected during the

Global PrecipitationMeasurement (GPM)Cold-Season

Precipitation Experiment (GCPEx) is developed. This

new parameterization leverages the uncorrelated mass

parameter PSD estimation technique developed byCorresponding author: Paloma Borque, paloma@illinois.edu
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Williams et al. (2014), as described below to eliminate

a free parameter in assumed PSD characteristics, which

can provide reduced uncertainties in ice-phase micro-

physical models and retrievals compared with currently

used schema.

One key application of an ice-phase PSD param-

eterization is for spaceborne active and passive ice

cloud retrievals. The GPM (Hou et al. 2014; Skofronick-

Jackson et al. 2017) Core Observatory satellite was

launched on 28 February 2014 by the National Aero-

nautics and Space Administration (NASA) and Japanese

Aerospace Exploration Agency as a follow-up to the

successful Tropical RainfallMeasuringMission (TRMM;

Kummerow et al. 1998). The dual-frequency precipi-

tation radar (DPR) aboard the GPM Core Observa-

tory satellite consists of a Ku-band radar operating

at 13.6GHz with a minimum detectable equivalent

reflectivity factor of 12–14 dBZ (or 0.5mmh21) and

a Ka-band radar operating at 35.5GHz with a mini-

mum detectable reflectivity of 12 dBZ (or 0.2mmh21;

Toyoshima et al. 2015). The increased sensitivity and

the addition of the Ka-band frequency represents a

new capability of GPM over TRMM to measure

snowfall and light precipitation from a space-based

perspective. Further, the sample of precipitation with

both DPR frequencies in an overlapping swath can

lead to quantitative estimates of PSD characteristics

that can be used to improve the associated GPM re-

trieval algorithms (Hou et al. 2014). This can be achieved

by a better determination of the PSD-derived physical

quantities such as ice water content (IWC) and effective

reflectivity Ze.

In current GPM algorithms, PSDs are assumed to

follow gamma distributions with three unknown math-

ematical parameters: the intercept N0, the shape m, and

the slope l (e.g., Ulbrich 1983; Seto et al. 2013; Williams

et al. 2014; Wu and McFarquhar 2018). Given two inde-

pendentmeasurements and an assumption or a constraint

on the third parameter, the PSD can be retrieved. There

has been extensive work on the constraint of one of the

three gamma parameters both from a ground-based radar

perspective (Zhang et al. 2001, 2003, 2006; Moisseev

and Chandrasekar 2007; Bringi and Chandrasekar

2001; Delanoë et al. 2014) and as part of satellite re-

trieval algorithms (Seto et al. 2013; Williams et al. 2014;

Grecu et al. 2011; Liao et al. 2014). Currently, the DPR

retrieval algorithm provides two measurements [Ze

and dual-frequency ratio (DFR)] and assumes a con-

stant value of m 5 3 (Seto et al. 2013). Recent studies

show success in reducing biases in the algorithms by

estimating uncorrelated mass parameters in rainfall

events (Williams et al. 2014; Liao et al. 2014). In partic-

ular, Williams et al. (2014) avoided mathematical artifacts

by developing joint probability distribution functions of

statistically independent PSD attributes for the raindrop

mass spectrum.

Beyond satellite retrieval needs of parameterizing

the PSD in ice-phase clouds, multiscale numericalmodels

need a priori assumptions of ice and snow hydrome-

teor species within bulk and bin microphysical pa-

rameterizations. At this time, most single-moment PSD

schemes (e.g., Lin et al. 1983; Hong et al. 2004; Thompson

et al. 2008; Lang et al. 2014) prescribe PSD character-

istics with a fixed intercept and m parameter (the latter

value typically prescribed to be m 5 0, yielding an ex-

ponential size distribution), with a slope parameter that

is a function of predicted hydrometeor mixing ratio.

In most two-moment schemes, m is usually assumed

to be constant (e.g., Ferrier 1994; Meyers et al. 1997;

Cohard and Pinty 2000; Morrison et al. 2009). How-

ever, others, such as the predicted particle proper-

ties (P3) scheme, use variable m for ice particles but

follow in situ observations of Heymsfield (2003) for

tropical and midlatitude ice cloud particles, with m

limited to positive values below 6 (Morrison and

Milbrandt 2015). Bin microphysics schemes have been

developed more recently in an attempt to more accu-

rately represent PSD characteristics in model simu-

lations. However, the behavior of these schemes in

ice-phase precipitation has only rarely been quanti-

tatively evaluated (e.g., Naeger et al. 2017; Milbrandt

and Yau 2005).

It is clear that satellite retrievals of ice-phase par-

ticles and model microphysical parameterizations are

in need of guidance from in situ observations as a

potential way forward to improve the representation

of ice-phase microphysical processes. In this study, a

catalog of in situ measurements collected during an

intensive cold-season precipitation field campaign is

used to evaluate the uncorrelated mass parameters

approach to estimate ice-phase PSDs. Furthermore,

a new PSD parameterization is introduced aiming

to improve the consistency of ice-phase precipitation

retrievals.

2. Data

GPM–Ground Validation (GV) campaigns collected

precipitation measurements over the course of mul-

tiple field campaigns in an effort to mitigate the un-

certainty in GPM retrieval algorithm assumptions,

especially in precipitation regimes that were previ-

ously challenging to retrieval algorithms (Petersen

and Schwaller 2008). Comparisons of precipitation

products from CloudSat, Aqua, TRMM, and GPM

show a clear disagreement in precipitation amounts
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at latitudes poleward of 308. These discrepancies are

most likely a result of different sensitivities of the

sensors [CloudSat Cloud-Profiling Radar: 227 dBZ,

TRMM Precipitation Radar (PR): 18 dBZ, and GPM

DPR: 12dBZ) in conjunction with the majority of pre-

cipitation occurring in the form of snowfall and of light

rainfall with shallow freezing levels and the inability

of those satellite precipitation sensors to accurately

detect and estimate precipitation in the regimes found

there (L’Ecuyer et al. 2010; Tang et al. 2017; Casella

et al. 2017). Differences among the various retrieval

algorithms that determine the phase of precipitation

could also play a role in these differences.

a. Aircraft in situ data

One of the overarching goals of GPM-GV is to char-

acterize the ability of multifrequency active and pas-

sive microwave sensors to detect and estimate ice-phase

precipitation rate. This effort entails numerous GPM-

specific and joint-agency field campaigns with state of

the art cloud and precipitation observational capabil-

ities (e.g., polarimetric radars, wind profiler radars, rain

gauges, disdrometers, and aircraft in situ observations).

One such field campaign was GCPEx conducted in

cooperation with Environment and Climate Change

Canada (ECCC) and NASA in January–February of 2012

near Barrie, Ontario, Canada (Skofronick-Jackson et al.

2015). GCPEx collected in situ cloud microphysics and

thermodynamic measurements using the University of

North Dakota (UND) Cessna Citation II research air-

craft (Delene and Poellot 2012). Aboard the Citation,

the King probe was used to quantify the liquid water

content (LWC), theNevzorov probe (Korolev et al. 1998)

was used to measure the LWC and total water content

(TWC), and the Rosemount Icing Detector (RICE) was

used to detect the presence of supercooled liquid water

(Brown 1982). Baumgardner et al. (2017) and references

therein describe the different in situ probes and measure-

ments that are used to characterize the microphysical

properties of ice clouds.

Two-dimensional cloud probe data from the UND

Citation were processed by the System for Optical Array

Probe Data Analysis (SODA) software developed by the

National Center for Atmospheric Research. PSDs were

obtained from a combination of observations from the

Cloud Imaging Probe (CIP) and the High Volume Pre-

cipitation Spectrometer, version 3 (HVPS3). The CIP is

an airborne particle spectrometer that nominally mea-

sures the size and shape of cloud particles from 25 to

1550mm, and the HVPS3measures the size and shape of

cloud particles from about 150mm to 19.2mm. Follow-

ing Heymsfield et al. (2008), merged PSDs were con-

structed with the CIP data for particles with maximum

dimension D smaller than 1mm and with the HVPS3

data for particles with D . 1mm. Particles with D ,
100mm were ignored because of uncertainties in the

probe’s sample area (e.g., Korolev and Field 2015;

Field et al. 2006). Particle reconstruction for particles

whose geometrical center was in the photodiode array

was used to expand the sampling range of both the CIP

and HVPS3 following the method described in Heymsfield

and Parrish (1978). Antishattering tips and the algo-

rithms described in McFarquhar et al. (2017) were used

to remove shattered artifacts from the sampled PSDs.

The use of the HVPS3, capable of measuring large

aggregates, and the handling of shattered artifacts

through improved probe design and software quality

control diminished the source of error in the sampled

particles and allows for an improved characterization

of the PSD in comparison with previous studies (e.g.,

Field et al. 2007).

During 12 intensive observation periods (IOPs) in

GCPEx, the UND Citation sampled a variety of winter

precipitation systems, with the majority representing

synoptically forced snowfall over southern Ontario

in Canada. This study seeks to characterize the PSDs

in exclusively ice-phase conditions. To achieve this, a

technique has been implemented to only include data

when the research aircraft sampled regions with purely

ice particles, namely excluding times when liquid or

mixed-phase conditions were present. Thus, in situ

observations were only considered if they met the

following three criteria: temperature T , 228C, total
particle total number concentration . 103m23, and no

changes in the voltage measured by the RICE above or

below one standard deviation of the median voltage of

the flight leg. Although other studies apply more sophis-

ticated phase detection schemes to delineate ice, mixed

phase, and liquid clouds (e.g., Cober et al. 2001;McFarquhar

et al. 2007; Jackson et al. 2012), the approach used here

proved to be sufficient to eliminate cases where liquid

was present in the sampled volume. Visual inspection of

the high-resolution Cloud Particle Imager (CPI) imag-

ery confirmed that periods in which liquid drops large

enough to be observed by the CPI were present are well

correlated with period of variations in the observed

RICE output, thus confirming that the aforemen-

tioned exclusion criteria is capable of detecting the

presence of supercooled liquid water particles larger

than approximately 35mm (McFarquhar et al. 2013).

Furthermore, the RICE criterion is a very conservative

condition and it could filter out time periods in which the

presence of super cooled liquid drops is not visible in

CPI imagery, or when the RICE probe is going in the

reheating cycle, provided the temperature was less than

about 228C. However, it will achieve its purpose of
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retaining mostly periods of only ice-phase particles in

the sample volume.

To describe the environmental and PSD character-

istics sampled in GCPEx as well as those that were

subselected in only ice-phase conditions, Fig. 1 shows

probability distribution functions (PDFs) of observed

quantities for all flights. Observations were collected

from about 500m AGL to heights below 8km for tem-

peratures ranging from slightly above 08C to below

2408C. Height distributions follow the expected in-

verse relation with temperature, and none of these

variables show a clear preferred value as a function of

specific temperature ranges (Fig. 1). It is important to

note that restricting the analysis to ice-phase conditions

implies that the TWC measured by the Nevzorov probe

should be identical to the IWC.

b. Radar measurements

Ground-based radar observations were also an inte-

gral part of GCPEx; such observations are of funda-

mental importance to link the in situ measured particle

properties to remotely sensed bulk characteristics. As

part of GCPEx, ECCC’s dual-polarization scanning

C-band radar located in King City, Ontario, Canada,

performed (in addition to their operational scanning)

range–height indicator sector scans and plan position

indicator scans (Hudak 2013). For some IOPs, the UND

Citation flew in the coverage region of the King City

radar, allowing for more than 3700 coincident (as defined

in section 2c) 10-s averaged measurements between

ground-based and in situ instrumentation. Following

Marks et al. (2011), radar reflectivity data were quality

controlled by removing points with copolar correlation

coefficient rHV , 0.75 and range standard deviation of

differential phase FDP over a gate-centered window of

1.5 km . 128.

c. In situ and ground-based data matching

The volumes sampled by probes onboard the UND

Citation and by the King City radar are not coincident.

Therefore, it is necessary to determine what temporal

and spatial separation can be tolerated to assume the

in situ measurements as linked to a corresponding radar

volume. In the present study, the volumes sampled by

theKingCity Radar and theUNDCitationwere defined

as collocated in time when the Citation was sam-

pling within the start and end time of each 10-min vol-

ume coverage pattern. Once a collocated volume was

defined a spatial matching algorithm between the radar

volume and Citation observations was used. Points were

weighted by constructing a collocated reflectivity along

the aircraft track averaged in linear units (mm6m23)

using an eight-closest point Barnes (1964) interpolation

technique as in Finlon et al. (2019). Reflectivities are

weighted according to distance r from the aircraft using

wi 5 exp(2r2/k2), with weighting parameter k given a

FIG. 1. PDF of (left) number concentration, (center) height, and (right) temperature for different temperatures ranging from below

2308C to 228C, increasing every 108C, for all of the observations collected by the UND Citation (red) and for the ice-phase-only cases

analyzed in this work (blue). Distributions for temperature for which the absence of liquid water could not be verified (i.e.: T . 228C)
are not shown.
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value of 500m. A sensitivity analysis of the radius

of influence in the matching technique showed that

varying k over selected values from 100m to 1.5 km for

all GCPEx flights only slightly changed the bias and

root-mean-square differences of the matched radar

reflectivities relative to the value of k used. Matched

reflectivity values were biased on average by less than

0.3 dBZ with a mean root mean squared difference of

1.2 dBZ for all radii tested except for radii less than

250m (which was the radial gate spacing of the raw

radar data).

3. PSD reconstruction

a. Definitions of PSD parameters

Particle size distributions are often assumed to follow

a gamma-shaped distribution given by

N(D)5N
0
Dme2lD , (1)

whereN(D) is the number distribution function andD,

N0, m, and l are as defined above (e.g., Ulbrich 1983;

Seto et al. 2013; Williams et al. 2014). Therefore, three

parameters (N0, m, and l) are needed to characterize

a PSD when represented as a gamma function. A

well-documented caveat with this PSD formulation

is the statistical dependence among these parameters

(e.g., Ulbrich 1983; Chandrasekar and Bringi 1987;

Moisseev and Chandrasekar 2007; Williams et al. 2014;

McFarquhar et al. 2015). Constraining one of the pa-

rameters, such as by introducing a m–l relationship,

reduces the number of free parameters within the

gamma PSD. Previous studies (e.g., Zhang et al. 2001,

2003) have shown that the application of such a re-

lation between m and l can improve rain-rate esti-

mations. However, others (e.g., Atlas and Ulbrich

2006; Moisseev and Chandrasekar 2007; Zhang et al.

2003; Cao and Zhang 2009) have debated whether this

statistical dependence can be used to discern physical

properties or if it is a statistical artifact due to the

initial assumption of the gamma size distribution. For

liquid particles, the DPR algorithm avoids such as-

sumptions by calculating the PSD with a normalized

gamma function (Testud et al. 2001) in terms of m and

two physical quantities: the normalized intercept Nw

(which is a function of LWC) and the mass-weighted

mean diameter Dm (Chandrasekar et al. 2005; Seto

et al. 2013), where

N(D)5N
w

6(m1 b1 1)(m1b11)

4(b11)G(m1 b1 1)

�
D

D
m

�m

e2(m1b11)(D/Dm) ,

(2)

with

D
m
5

ð‘
0

mN(D)DdDð‘
0

mN(D) dD

and (3)

N
w
5

4b11

pr
w

 
LWC

Db11
m

!
. (4)

Herein, a and b are the parameters of the power-law

particle mass–dimension relation of the form m 5 aDb

described in more detail in section 4. Delanoë et al.

(2014) showed that by combining N0, Dm, and a modi-

fied gamma function the IWC could be estimated with

an absolute mean relative error smaller than 20%.

Current TRMM PR and DPR algorithms retrieve Nw

andDm given an assumption on m (e.g., Meneghini et al.

1992; Zhang et al. 2001; Mardiana et al. 2004; Liao and

Meneghini 2005;Munchak andTokay 2008; Kumar et al.

2011; Grecu et al. 2011; Seto et al. 2013; Williams et al.

2014). In particular, current GPM version-5 algorithms

assumem to be constant and equal to 3 (Seto et al. 2013).

However, the rain rates estimated from these retrieval

algorithms are sensitive to m, and small changes in its

value lead to large changes in precipitation estimates.

For example, Grecu et al. (2011) showed that changing

m from 0 to 1 led to 15% differences in the estimations

of precipitation water content, whereas Liao et al.

(2014) showed that larger m values (3, 6, and 10) lead

to a relative bias of rain-rate estimates of larger than

10%. Williams et al. (2014) proposed a method to pa-

rameterize gamma PSD characteristics by calculating

a statistically independent m–Dm constraint for the

m parameter. Their results showed that the rain-rate

bias never exceeded 3.5% when the statistically in-

dependent m–Dm constraint was applied. Our study

expands the Williams et al. (2014) technique to ice

particles, and thus, given the variable effective density

of ice-phase particles, the coefficients of a and b in the

mass–dimension relation must be considered. There-

fore, expanding Eq. (3) leads to

D
m
5

ð‘
0

aDbN(D)DdDð‘
0

aDbN(D) dD

5

ð‘
0

Db11N(D) dDð‘
0

DbN(D) dD

ffi
�
Dmax

Dmin

Db11N(D)DD

�
Dmax

Dmin

DbN(D)DD

, (5)
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and the mass spectrum standard deviation sm, which

physically represents the width of the PSD mass spec-

trum, is given by

s2
m 5

ð‘
0

mN(D)(D2D
m
)2 dDð‘

0

mN(D) dD

5

ð‘
0

aDbN(D)(D2D
m
)2 dDð‘

0

aDbN(D) dD

ffi
�
Dmax

Dmin

DbN(D)(D2D
m
)2DD

�
Dmax

Dmin

DbN(D)DD

, (6)

where Dmin and Dmax are the minimum and maximum

dimensions of measured ice particles, respectively, and

DD is the width of the size bin.

Combining Eqs. (5) and (6) leads to

m5 (D2
m/s

2
m)2 (b1 1). (7)

Following Williams et al. (2014), a statistically in-

dependent parameter s0
m can be defined as

s0
m 5s

m
/D

bm
m , (8)

where bm is adjusted until the Pearson correlation co-

efficient between sm and Dm is 0 (Haddad et al. 1996;

Williams et al. 2014). This leads to the following statis-

tically independent relationship for m:

m5 [D
2(12bm)
m /s02

m]2 (b1 1). (9)

The parameters of the m–D relationship used in this

work (a5 3.593 1023 g cm22.1 and b5 2.1) correspond

to the values found by Heymsfield et al. (2010) for

observations analyzed in a similar region to where

GCPEx took place [Alliance Icing Research Study

(AIRS) in Toronto, Ontario, Canada, and the Canadian

CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) Validation Programme

(C3VP) near Barrie].

Figure 2 shows PDFs of Dm, sm, and m derived from

the in situ observations for all of the flights that took

place during GCPEx. The properties have different

distributions depending on temperature (Fig. 2). There

is a noticeable increase in Dm as temperature increases,

from a median of around 0.25mm for temperatures

lower than 2308C to 1.5mm in the interval from 228
to2108C. The PSD becomes narrower as temperature

decreases (with a normal distribution of sm centered

at 0.8mm for228 , T,2108C to sm close to zero for

T , 308C). The shape parameter m is centered around

zero for temperatures between228 and2208C but shifts

toward larger values as temperature decreases such that

for temperatures between2208 and2308C it is centered

FIG. 2. As in Fig. 1, but for (left) Dm, (center) sm, and (right) m.
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at m 5 2. The width of the m PDF also increases with

decreasing temperature, from a narrow distribution at

the highest temperature to a very broad distribution

for temperatures below2308C (Fig. 2). It is important to

note that restricting the dataset to samples in which no

liquid was present did not alter the main characteristics

of the PDFs presented in Figs. 1 and 2.

b. Characterization of Dm, sm, and m distributions
observed during GCPEx

The statistical relationships found for ice-phase par-

ticles between sm and Dm and between m and Dm have

a similar shape as for rainfall observations (Williams

et al. 2014) but with different absolute values (Fig. 3). In

particular, for small Dm, m has a large spread of values

ranging from 23 to greater than 10 (Fig. 3b).

To have a consistent comparison between the results

presented here and those for rainfall presented byWilliams

et al. (2014), the frequency of occurrence plots are re-

done for the PSD parameters determined using the

melted equivalent diameter

D
melted

5 [6m/(pr)]1/3 , (10)

where r is the density of water. Figures 3c and 3d show

the effect of replacing D by Dmelted in the calculations

of Dm, sm, and m (herein, Dmelted
m , smelted

m , and mmelted).

Similar to what was described for these parameters

computed with the maximum dimension, the statistical

relationships found for ice-phase particles betweensmelted
m

andDmelted
m and betweenmmelted andDmelted

m have a similar

shape as for rainfall observations (Williams et al. 2014)

FIG. 3. Joint frequency of occurrence of (a) sm and (b) m as a function Dm for the entire ice-phase dataset.

(c),(d) As in (a) and (b), but using the melted equivalent diameter. The statistically independent relationship

between the different variables for ice and snow cases from GCPEx in situ observations (red line) and for rainfall

from Williams et al. (2014) (black line) and their equations are also shown.
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but with different absolute values (Figs. 3c,d). There is

a high concentration of samples (more than 40%) for

Dmelted
m between 0.2 and 0.4mm with mmelted close to 3.

This is represented by a median mmelted of 3.3. However,

it is important to note that there is a clear variability of

mmelted with Dmelted
m . In particular, mmelted ranges from

negative values to larger than 25 forDm, 0.2mm, and it

is likely to tend to 0 for Dm . 0.4 (Fig. 3d). This vari-

ability is also represented by the mean and standard

deviation of mmelted being 5.3 and 13.3 respectively.

Thus, it is important to consider this variability in the

representation of m, computed with either the maxi-

mum dimension or the melted equivalent diameter.

Figures 3 and 4 show that the previously found

relationship between m and Dm for rainfall cases

(Williams et al. 2014) is not representative of ice-phase

particles and that there is a clear necessity to use dif-

ferent relationships for retrieving particles distribu-

tions of different precipitation types. Assuming a

constant m represents a large uncertainty for any re-

trieval algorithm for ice-phase particles. However,

when considering particles within the detectability

range of the GPM DPR of Ze . 12 dBZ, this broad

range of m values decreases (Fig. 4b). The ice-phase

PSDs observed during GCPEx that are within the de-

tectability range of the GPMDPR (above the red line in

Fig. 5) were not likely to have m . 1. In particular, only

3%of the ice-phase PSDs observed duringGCPEx within

the detectability range of the GPM DPR have m $ 3.

Thus, the current GPM algorithm assumption of m 5 3

FIG. 4. As in Fig. 3, but for GPM-detectable particles (Ze $ 12 dBZ).

FIG. 5. (a) Joint frequency of occurrence ofZe as a function ofDm, and (b)medianm as a function ofZe andDm. The

minimum detectable signal for the DPR on board the GPM (12 dBZ) is shown with a dashed red line.
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overestimates the vast majority of m values observed

during GCPEx. Given that a large value of m indicates a

large tail in the PSD, the current GPM algorithm as-

sumes the presence of larger particles in the retrieved

PSD than are present (Fig. 4b).

The data collected during GCPEx show that the

best statistical relationship, as determined by a poly-

nomial curve fitting that is the best fit (in a least squares

sense) between m and Dm for ice-phase particles is

given by

m(D
m
)5 5:10mm0:41 D20:41

m 2 4. (11a)

The best statistical relationship between m andDm for

ice-phase particles in the detectability range of theGPM

DPR algorithm is given by

m(D
m
)5 4:49mm0:25D20:25

m 2 4: (11b)

The mean-mass diameter shows a positive relation-

ship with temperature for both the m–Dm and sm–Dm

distributions, implying that the temperature depen-

dency of the shape and width of the distribution is likely

to be implicitly included when considering the PSD

dependency on Dm (Fig. 6).

c. Comparison of different PSD estimations

The validity of the framework described in the

previous section for the representation of PSDs is

tested with independent measurements of IWC and

Ze. Reflectivity can be estimated from the PSD as

Z
e
5

1018l4

0:93p5 �
Dmax

Dmin

n(D)s
b
DD , (12)

where l is the wavelength; in this case, l 5 5.33 cm to

compare the estimations with the King City C-Band

radar, and hsbi is the ensemble-average backscatter

cross section.

Following the self-similar Rayleigh–Gans approxi-

mation (Hogan and Westbrook 2014),

s
b
5
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where k is the wavenumber, x 5 kD, and K 5 (« 2 1)/

(«1 2) with « being the dielectric constant of solid ice;

k, b, and g are the coefficients 0.19, 0.23, and 5/3 re-

spectably, and V is the volume of the precipitating

particle calculated assuming the particle shape can be

represented by an ellipsoid of axis ration of 0.6 (Hogan

et al. 2012) so that

V5
aDb

r
i

5
a(0:6D)b

r
i

. (14)

FIG. 6. Scatterplot of (a) sm and (b)m as a function ofDm, with the colors representing the temperature at which the

observations were made.
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Ice water content can be calculated as

IWC5

ð‘
0

mass3N(D) dD5

ð‘
0

aDbN
0
Dme2lD dD

5 aN
0

Gb1m11

lb1m11
. (15)

IWC comparisons are made between the observed

values of TWC from the Nevzorov probe mounted on

the UND Citation and estimates [following Eq. (15)]

from in situ PSDs as sampled by the Citation, and

from reconstructed PSDs using the moment-based

method (following the method described in section

3), the Field et al. (2007) parameterization, and the

lowest most likely estimate (i.e., lowest x2 goodness

of fit) using the incomplete gamma-fitting technique

(IGF; McFarquhar et al. 2015). The IGF technique

estimates a volume of equally realizable solutions in (N0,

l,m) phase space that characterized every single PSDor a

family of PSDs obtained in similar conditions. This is

done by minimizing the x2 difference between observed

moments of the PSD (the first, third, and sixth moments

of the PSDare used here) and those estimated from the fit

parameters (McFarquhar et al. 2015). From the gener-

ated volume the pair of N0, l that give the minimum x2

for a specific fixed value of m can be determined.

The estimated TWC from the IGF method is re-

stricted to theminimum andmaximumdimension of the

sampled particles (Dmin 5 75mm andDmax 5 27.5mm).

On the other hand, PSD-based estimates are computed

following the complete gamma function definition, and

thus are integrating over all sizes from zero to infinity

[Eq. (15)]. When comparing the difference between the

incomplete (between Dmin and Dmax) and the complete

gamma functions for the observed GCPEx PSDs, it can

be shown that the contribution of the particles with a

diameter smaller thanDmin and larger thanDmax to IWC

is smaller than 0.2%. Therefore, the comparison shown

here between the observed TWC and the different es-

timates from reconstructed PSDs following Eq. (15) is

appropriate.

The retrieval of IWC from the sampled PSD and the

different PSD reconstructions lead to similar estimates,

with a mean underestimation of IWC , 10% with re-

spect to the value sampled by theNevzorov probe (Fig. 7

and Table 1). Considering observations within the de-

tectability range of the GPM satellite (Ze $ 12 dBZ)

the inaccuracy increases to 30% positive bias for IWC

estimations from reconstructed PSDs (Table 1). Overall,

the estimated IWCs following the IGF and moment-

based methods are slightly closer to the observed

value, by 2% and 4% for all ice-phase particle and

GPM-detectable PSDs, respectively, than applying the

Field et al. (2007) parameterization (Table 1). In par-

ticular, forDm . 3mm, all IWC estimations analyzed in

this work are likely to overestimate the observed IWC

when comparedwith theNevzorov probe (Figs. 7 and 8).

One possible reason for this is that the Nevzorov probe

could be underestimating IWC during conditions con-

taining PSDs with large particles (and thus large Dm)

because of particle shattering and bounce out (Korolev

et al. 2013). Another possible reason is the dependence

of them–D relationship on particle habit, which implies

that an incorrect selection of the a and b parameters

could lead to an incorrect estimation of the particles’

mass and thus to an incorrect estimation of IWC that

could be particularly important for large particles where

large aggregates could be misrepresented.

Reflectivity estimated from the different PSDs [follow-

ing Eq. (12)] are compared with those from the ground-

based King City radar extracted along the path of the

Citation following the matching criteria described in

section 2c. For all sampled ice-phase particles, Fig. 9

and Table 2 show that the estimates of Ze based on the

observed PSD, moment-based, and IGF methods have

a mean and median positive bias around 8% with re-

spect to the remotely sensed value. On the other hand,

estimates using the Field et al. (2007) parameteriza-

tion lead to a 37% mean and a 17% median over-

estimation of the remotely sensed reflectivity. All Ze

estimates have a large spread for smaller values of Dm

(Fig. 9) with someoutliers representing differences larger

than 10 dBZ. For Dm . 1mm the estimation from the

moment-based and IGF methodologies tend to the ob-

served Ze (Fig. 9). Thus, considering only the observa-

tions within the detectability range of the GPM satellite,

the median overestimation decreases to a 2% posi-

tive bias for estimations from the observed PSD and

the reconstructed PSD following the moment-based and

IGFmethods (Fig. 10 and Table 2). However, applying the

Field et al. (2007) parameterization leads to a mean (me-

dian) underestimation of the observedZe of 78% (45%) for

the observations withZe$ 12dBZ (Fig. 10b and Table 2).

Discrepancies when comparing reflectivity from a

ground-based radar with estimates from in situ PSDs are

expected. Similar to the errors found in the IWC esti-

mates, the uncertainty in the mass–dimension relation-

ship can contribute (this factor is analyzed inmore detail

in section 4); in the case of Ze, the different sample

volumes and the poor sensitivity of a C-band radar to

small particles can also have an impact.

4. Analysis of the mass–dimension relationship

Previous studies have parameterized themassm of ice

particles as a function of their maximumdimensionD by
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m(D) 5 aDb, with a and b being empirically derived

(e.g., Mitchell et al. 1990; Mitchell 1996; McFarquhar

et al. 2007; Heymsfield et al. 2008, 2010; Finlon et al.

2019). There is considerable variation in published a

and b values with the Brown and Francis (1995) relation,

or its modified version for maximum dimension (Hogan

et al. 2012), frequently used in algorithm development

(e.g., Hogan et al. 2006; Heymsfield et al. 2008; Chase

et al. 2018). However, fixed a and b values only char-

acterize the average representation of a particle’s mass

but fail to capture the dependence of these parameters

on habit, temperature, and cloud type (Heymsfield

et al. 2010). Thus, Heymsfield et al. (2010) defined

four different m–D relationships with a constant b of

2.1 but a depending on the environment. Specifically,

one subset of the dataset they analyzed corresponds

to observations from field campaigns in a similar re-

gion to where GCPEx took place and therefore, the

m–D relationship found for that dataset [m(D) 5
3.593 1023 cm22.1D2.1] is used in this work and as the

reference values to the estimations computed in this

section.

TABLE 1. Mean and median values of the ratio between TWC from the Nevzorov probe on board the UND Citation and the IWC

estimated from the observed PSD (IWCobs), the Field et al. (2007) parameterization (IWCField), the Williams et al. (2014) method,

(IWCmoment), and the IGF estimates (IWCIGF).

All ice-phase data GPM-detectable data

Mean Median Mean Median

TWC/IWCobs 1.08 (8%) 1.03 (3%) 0.70 (30%) 0.69 (31%)

TWC/IWCField 1.10 (10%) 1.05 (5%) 0.74 (26%) 0.73 (27%)

TWC/IWCmoment 1.08 (8%) 1.03 (3%) 0.69 (31%) 0.69 (31%)

TWC/IWCIGF 1.08 (8%) 1.03 (3%) 0.70 (30%) 0.69 (31%)

FIG. 7. Normalized joint frequency of occurrence of the ratio of IWC between observations from the Nevzorov

probe on board the UND Citation and that estimated from different techniques, as a function of Dm, showing the

difference with respect to estimations from (a) the observed PSD, (b) the Field et al. (2007) method, (c) the

Williams et al. (2014) method, and (d) IGF estimates.
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Any errors in them–D relationship propagate through

the sm and Dm calculations and affect IWC and Ze es-

timates. Thus, it is valuable to look at the level of un-

certainty that fixed a and b coefficients introduced by

the m–D relationship add to the analysis. Here, the

uncertainty is given by the range of possible sm, Dm,

m, IWC, andZe values estimated using theGCPEx PSDs

while adjusting for possible a and b values following the

observations shown in Heymsfield et al. (2010) for mid-

latitude stratiform-type clouds in the region similar to the

observations analyzed here (a ranges from33 1023gcm22.1

to 3 3 1022 g cm22.1, and b ranges from 1.5 to 3.5). The

a and b proposed in Brown and Francis (1995) of a 5
2.943 1023 g cm22.1 and b5 1.9 are also analyzed. From

Eqs. (5), (6), and (9), it is seen thatDm, sm, and m do not

depend on a but that changes in the exponent b affect

the resulting Dm, sm, and m. Therefore, assuming that

the finding fromHeymsfield et al. (2010) of b in them–D

relationship is correct, there would be no additional

error propagated through theDm,sm, andm calculations

as a result of using different a assumptions (Figs. 11a–c).

On the other hand, an unfitting selection of coefficient

b leads to minor biases in m, Dm and sm. Considering

the variety of b coefficient present in the literature,

applying a small value of b (b5 1.5) is likely to cause an

underestimation of 12% for Dm and 9% for sm and an

overestimation of 20% for m (Figs. 11a–c). Likewise,

applying a large value of b (b 5 3) is likely to be asso-

ciated with an overestimation of 19% for Dm and 20%

for sm and an underestimation of 4% form (Figs. 11a–c).

The impact of a and b becomes significant when cal-

culating different moments of the distribution, such as

IWCandZe, for which applying a large value of b (b5 3)

is associated with a more than 50% overestimation of

Ze and an underestimation of 3% for IWC (Figs. 11d,e)

and applying a small b leads to an underestimation of

44% for Ze and an overestimation of almost 4 times

the reference value of IWC (Figs. 11d,e). As previously

mentioned, applying different a values in the m–D re-

lationship has no impact on Dm, sm, and m but does

affect the estimates of Ze and IWC. Applying a small

value of a (a 5 3 3 1024 g cm22.1) is likely to cause a

slight underestimation of 9% for IWC but considerably

decreases Ze, going from the estimated referenced value

of 14dBZ to a value of 27.6dBZ (Figs. 11d,e). On the

other hand, applying a large value of a (a 5 3 3
1022 g cm22.1) leads to an overestimation of more than

8 times the referenced value of IWC and 2 times the

FIG. 8. As in Fig. 7, but for particles in the GPM detectability range (i.e., Ze $ 12 dBZ).
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referenced Ze values (Figs. 11d,e). In particular, when

comparing the results of using the a and b coefficients

fromHeymsfield et al. (2010) versus the ones introduced

by Brown and Francis (1995) there is less than a 5%

discrepancy in Dm, sm, and m, but as it propagates into

the calculations for the different variables the error

amplifies to 40% overestimation in IWC and 25% un-

derestimation in Ze. It is important to note, however,

that the covariability of a and b was not considered here

(e.g., Finlon et al. 2019).

The large spread in the estimations of Ze and IWC

shows the severe impact that the selection of a and b in

the mass–dimension relationship, even from realistic

values previously used in the literature, has in the

calculations of these variables. This could represent

a reason for the differences found when comparing

estimates of Ze and IWC from the sampled and re-

constructed PSDs with the independently observed

values (Figs. 7–10).

5. PSD parameterization for ice-phase particles

Herein a parameterization of the PSD that improves

the consistency of the retrievals for ice-phase precipi-

tation is presented usingGCPEx PSDobservations. This

is of fundamental use for the atmospheric modeling

TABLE 2. As in Table 1,but for effective reflectivity. The observedZe corresponds to the matched effective reflectivity from the King City

C-band radar along the path of the UND Citation.

All ice-phase data GPM-detectable data

Mean Median Mean Median

Ze(radar)/Ze(PSD) 1.08 (8%) 0.93 (7%) 1.22 (22%) 1.02 (2%)

Ze(radar)/Ze(Field) 1.37 (37%) 1.17 (17%) 1.78 (78%) 1.45 (45%)

Ze(radar)/Ze(moment) 1.08 (8%) 0.93 (7%) 1.23 (23%) 1.02 (2%)

Ze(radar)/Ze(IGF) 1.07 (7%) 0.92 (8%) 1.23 (23%) 1.01 (1%)

FIG. 9. As in Fig. 7, but forZe. The observedZe corresponds to the matched effective reflectivity from the King City

C-band radar along the path of the UND Citation.
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community and should help to guide the assumptions for

retrievals development in double-moment microphysi-

cal schemes. Expanding Eq. (3) leads to

D
m
5

ð‘
0

mN(D)DdDð‘
0

mN(D) dD

5

ð‘
0

aN
0
Db1m11e2lD dDð‘

0

aN
0
Db1me2lD dD

5
G(b1 11m1 1)

lb111m11

lb1m11

G(b1m1 1)
5

b1m1 1

l
, (16)

which can be rearranged to obtain

l5 (b1m1 1)/D
m
. (17)

From Eq. (15) it follows that

N
0
5 IWC

lb1m11

aGb1m11
. (18)

Therefore, from the best fit between m and Dm for

ice-phase particles found in this work [Eq. (11)] and

Eqs. (17) and (18), the PSD for ice-phase particles

[N(D) 5 N0D
me2lD] can be described with only two

input variables,Dm and IWC.Note that in the derivation

of the best fit between m and Dm the exponent in the

mass–dimension relationship was assumed to be 2.1.

However, any value of a and b in a mass–dimension

relation could be used within the relations above.

6. Estimated Ze using different m constraints

The difference betweenZe estimated from themoment-

based method with varying m and those estimated for

different constant values of m and for m as a function of

Dm [Eqs. (10a) and (10b)] is shown in Figs. 12 and 13.

Figure 12 shows the impact of varying m for the entire

ice-phase dataset collected during GCPEx. As expected

from Fig. 3, using a constant m or m as a function of Dm

for the entire dataset gives a large spread in the esti-

mated Ze, especially for Dm , 2mm. For example, for

Dm 5 1mm all estimates of Ze can present more than

a 50% error (Fig. 12). The moment-based method with

m 5 0 slightly overestimates Ze with a 3% mean bias

(Fig. 12a). This overestimation increases as the selected

m value increases. For example, using m5 3, as currently

FIG. 10. As in Fig. 9, but for particles in the GPM detectability range (i.e., Ze $ 12 dBZ).
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used in the GPM algorithm, leads to a 1% bias in the

estimated Ze, and using m 5 10 represents a 3% mean

overestimation (Fig. 12 and Table 3). Applying the best

fit between m and Dm for ice-phase particles [Eq. (11a)]

leads to a better representation of the small particles

(Dm , 2.5mm) and a median bias smaller than 1%

(Fig. 12d and Table 3). As Dm increases, the spread

between Ze estimates with varying m and the estimates

under different m assumptions decreases (Fig. 12). There-

fore, restricting the dataset to observations in the de-

tectability range of the GPM DPR leads to overall a

smaller spread and a better fit given an appropriate se-

lection of m (Fig. 13 and Table 3). Increasing the m value

used in the calculations of Ze leads to lower estimates of

Ze, using a constant value of m 5 0 leads to a 2% mean

bias, using m5 3 leads to a bias of 5%, and using m5 10

leads to a 7% bias (Figs. 13a–c and Table 3). These

findings are consistent with the median of the distribu-

tion for the different estimates (Table 3). Moreover,

applying the best fit between m and Dm for ice-phase

particles in the detectability range of the GPM DPR

[Eq. (11b)] leads to the lowest discrepancies, with a

mean and median bias smaller than 1% (Fig. 13d and

Table 3). It is important to note that these statistical

values show that, on average, choosing an exponential

distribution (i.e.: m 5 0) versus a gamma distribution

seem comparable. However, the variability of the

m parameter is a function ofDm and the benefits of using

the gamma distribution is present for small mass-weighted

mean diameter. For example, assuming that the PSD

follows an exponential distribution for Dm , 1mm leads

to an error 3 times as large as that obtained when assuming

that the PSD follows a gamma distribution with m as a

function of Dm.

7. Summary and conclusions

Both satellite retrieval algorithms and model micro-

physical parameterizations are in need of guidance from

observations to improve the representation of ice-phase

quantities and processes. Here, in situ observations

collected during GCPEx were analyzed to expand the

method originally proposed byWilliams et al. (2014) for

raindrop mass distributions to ice-phase particles. This

technique parameterizes gamma PSD characteristics

by calculating an independent m –Dm constraint for the

m parameter. The statistical relationships between m and

Dm found for ice-phase particles [either by using the

maximum dimension or the equivalent melted diameter

in Eqs. (3)–(10)] differ from the one found for rainfall

observations (Figs. 3 and 4). In particular, using the max-

imum dimension of the sampled particle, for GCPEx there

FIG. 11. Influence of different a and b parameters, via the mass–diameter relation, in (a) Dm, (b) sm, (c) m, (d) IWC, and (e) Ze. This

effect is quantified by estimating the mass for different a and b and calculating the associated moments and variables normalized by the

ones using ao and bo. Therefore, a value of 2 or 0.5 indicates that, for the corresponding a and b value, there is a 100% positive or 50%

negative bias, respectively, in the estimated variable. The a and b values used in this work (Heymsfield et al. 2010) are indicated with the

black lines.
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is a large spread of m, ranging from 23 to greater than

10 forDm, 1mm (Fig. 3). Thus, any algorithm designed

for ice-phase particles that assumes a constant m will

have a large uncertainty in any retrieved variable, es-

pecially for small Dm for conditions similar to those

sampled during GCPEx. Furthermore, given that the

relationship previously found between m and Dm for

rainfall is not representative of ice-phase particles, the

necessity to use different relationships for retrievals of

different precipitation types is evident. Thus, more re-

alistic microphysical parameterizations across the full

range of observable ice-phase clouds require an adapt-

able constraint that considers the observed variability in

m. Here, the best statistical relationship between m and

Dm for all ice-phase particles collected during GCPEx

is given in Eq. (11a). When considering only observa-

tions within the detectability range of the GPM DPR

of Ze $ 12 dBZ, m does not exhibit a broad range of

values and is likely to be around 0 (Fig. 4). This result

indicates that it is critical to allow m close to 0 for a

better representation of GPM-detectable ice-phase

PSDs and that a different relationship between m and

Dm is needed [Eq. (11b)].

The effect of introducing the relationship between

m and Dm in the estimation of effective reflectivity and

ice water content for ice-phase particles was analyzed

in section 3c. When compared with independently ob-

served values of Ze and IWC, the retrieved variables

from the reconstructed PSD including the m and Dm

constraint had an 8% mean expected error in both

FIG. 12. Normalized joint frequency of occurrence of the ratio between the estimated Ze with varying m and Ze

estimated with (a) m5 0, (b) m53, (c) m510, and (d) m(Dm)5 5:0983D20:41
m 2 4 as a function ofDm. Frequencies

larger than 50% are enclosed by the solid black line, and a zero difference between the estimated reflectivities is

marked with a dotted red line.
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variables (Tables 1 and 2). Furthermore, this error is

smaller than or equivalent to the expected error when

estimating these variables following other techniques

or parameterizations (Tables 1 and 2). In particular,

applying the Field et al. (2007) parameterization to

estimate Ze leads to a mean 37% overall overestimation

and a 78% mean overestimation for particles with Ze $

12 dBZ (Fig. 10b and Table 2). This is in contraposition

to the 8% and 22% when applying the m and Dm con-

straint to all ice-phase particle and GPM-detectable

PSDs, respectably (Table 2). This shows that, espe-

cially for Ze estimates, parameterizing the gamma PSD

FIG. 13. As in Fig. 12, but for particles in the GPM detectability range (i.e., Ze $ 12 dBZ) so that the relationship

used in (d) is m(Dm)5 4:493D20:25
m 2 4 [Eq. (11b)].

TABLE 3.Mean andmedian values of the ratio between estimatedZewith varyingm and that estimated withm5 0 [Ze/Ze(m5 0)],m5 3

[Ze/Ze(m 5 3)], m 510 [Ze/Ze(m 5 10)], and m(Dm)5 5:0983D20:41
m 2 4 [Eq. (11a)] for all ice-phase data and m(Dm)5 4:493D20:25

m 2 4

[Eq. (11b)] for Ze . 12 dBZ [Ze/Ze(m 5 best fit)].

All ice-phase data GPM-detectable data

Mean Median Mean Median

Ze/Ze(m 5 0) 0.97 (3%) 1.01 (1%) 1.02 (2%) 1.01 (1%)

Ze/Ze(m 5 3) 0.99 (1%) 1.03 (3%) 1.05 (5%) 1.04 (4%)

Ze/Ze(m 5 10) 0.97 (3%) 1.04 (4%) 1.07 (7%) 1.06 (6%)

Ze/Ze(m 5 best fit) 0.96 (4%) 1 (,1%) 1 (,1%) 1 (,1%)
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by calculating a statistically independentm –Dm constraint

for the m parameter represents a clear improvement to

currently used algorithms in ice-phase precipitation. It is

important to add that the Field et al. (2007) parame-

terization requires only one moment to generate a PSD

estimate, whereas the parameterization presented in this

work requires two inputs, such as Ze and DFR. In real

data, these two inputs could contain measurement error

that may impact the retrieved PSD parameters; the

impacts of measurement errors on PSD retrievals will

be a topic for future study.

This work further illustrates the variability of m in

observed ice-phase clouds and further demonstrates

the impact of a constant m on Ze estimates (Figs. 12

and 13). The simple assumption used in the current

GPM algorithms ofm5 3 leads to an erroneous retrieval

ofZe, with amean underestimation ofZe of 5%, whereas

applying the best fit found in this work between m and

Dm reduces this to a smaller-than-1% overestimation

(Figs. 13 and Table 3). Therefore, a straightforward im-

provement that can be done in the current GPM algo-

rithm is to use values of m that are more representative

of snowfall conditions for high-latitude retrievals.However,

further study is needed before applying these results

on a global scale because the m parameter relationship

may be regime dependent, including in mixed-phase

conditions that were excluded in this study.

The impact of the selection of the a and b coefficients

in the mass–dimension relation m(D) 5 aDb on the re-

trieved IWC and Ze was also presented. This study

compared the impact of the selected a and b coeffi-

cients used in this work with estimates of IWC and Ze

using a range of a and b values previously used in the

literature. It was found that applying a large value

of b (b 5 3) is likely to cause more than 50% over-

estimation of Ze and an underestimation of 3% of

IWC and that use of a small b (b 5 1.5) leads to an un-

derestimation of 44% for Ze and an overestimation of

almost a factor of 4 in IWC (Fig. 11). The impact of the a

coefficient in the calculation of these variables is also signif-

icant; applying a small value of a (a5 33 1024 g cm22.1)

is likely to cause an underestimation of 9% for IWC

and a considerable underestimation of Ze (from an ex-

pected referenced value of 14 dBZ to 27.6 dBZ), and

applying a large value of a (a 5 3 3 1022 g cm22.1)

leads to a major overestimation in both variables: more

than a factor of 8 for IWC and a factor of 2 forZe (Fig. 11).

This spread in the estimations of Ze and IWC demon-

strates the need to use a and b parameters that are most

representative of the sampled particles so as to mini-

mize any errors in the mass calculation and thus avoid

further error propagation and amplification into the

calculations of different variables, including a wider

variety of precipitation conditions sampled in other

regions.
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